Verschil tussen parallellogram en rechthoek

Verschil tussen parallellogram en rechthoek
Verschil tussen parallellogram en rechthoek

Video: Verschil tussen parallellogram en rechthoek

Video: Verschil tussen parallellogram en rechthoek
Video: Properties of a rhombus, rectangle, and a square 2024, November
Anonim

Parallelogram versus rechthoek

Parallelogram en rechthoek zijn vierhoeken. De geometrie van deze figuren was al duizenden jaren bekend bij de mens. Het onderwerp wordt expliciet behandeld in het boek “Elements” geschreven door de Griekse wiskundige Euclides.

Parallelogram

Parallelogram kan worden gedefinieerd als de geometrische figuur met vier zijden, met tegenoverliggende zijden evenwijdig aan elkaar. Meer precies is het een vierhoek met twee paar evenwijdige zijden. Deze parallelle aard geeft veel geometrische kenmerken aan de parallellogrammen.

Afbeelding
Afbeelding
Afbeelding
Afbeelding

Een vierhoek is een parallellogram als de volgende geometrische kenmerken worden gevonden.

• Twee paar tegenover elkaar liggende zijden zijn even lang. (AB=DC, AD=BC)

• Twee paar tegenovergestelde hoeken zijn even groot. ([latex]D\hoed{A}B=B\hoed{C}D, A\hoed{D}C=A\hoed{B}C[/latex])

• Als de aangrenzende hoeken supplementair zijn [latex]D\hat{A}B + A\hat{D}C=A\hat{D}C + B\hat{C}D=B\hat {C}D + A\hat{B}C=A\hat{B}C + D\hat{A}B=180^{circ}=\pi rad[/latex]

• Een paar zijden, die tegenover elkaar liggen, zijn evenwijdig en even lang. (AB=DC & AB∥DC)

• De diagonalen halveren elkaar (AO=OC, BO=OD)

• Elke diagonaal verdeelt de vierhoek in twee congruente driehoeken. (∆ADB ≡ ∆BCD, ∆ABC ≡ ∆ADC)

Verder is de som van de kwadraten van de zijden gelijk aan de som van de kwadraten van diagonalen. Dit wordt soms de parallellogramwet genoemd en heeft wijdverbreide toepassingen in de natuurkunde en techniek. (AB2 + BC2 + CD2 + DA2=AC2 + BD2)

Elk van de bovenstaande kenmerken kan als eigenschappen worden gebruikt, zodra is vastgesteld dat de vierhoek een parallellogram is.

De oppervlakte van het parallellogram kan worden berekend door het product van de lengte van de ene zijde en de hoogte naar de andere zijde. Daarom kan het gebied van het parallellogram worden vermeld als

Gebied van parallellogram=basis × hoogte=AB×h

Afbeelding
Afbeelding

Het gebied van het parallellogram is onafhankelijk van de vorm van het individuele parallellogram. Het is alleen afhankelijk van de lengte van de basis en de loodrechte hoogte.

Als de zijden van een parallellogram kunnen worden weergegeven door twee vectoren, kan het gebied worden verkregen door de grootte van het vectorproduct (uitwendig product) van de twee aangrenzende vectoren.

Als zijden AB en AD worden weergegeven door respectievelijk de vectoren ([latex]\overrightarrow{AB}[/latex]) en ([latex]\overrightarrow{AD}[/latex]), dan is de oppervlakte van de parallellogram wordt gegeven door [latex]\left | \overrightarrow{AB}\times \overrightarrow{AD} right |=AB\cdot AD \sin \alpha [/latex], waarbij α de hoek is tussen [latex]\overrightarrow{AB}[/latex] en [latex]\overrightarrow{AD}[/latex].

Hier volgen enkele geavanceerde eigenschappen van het parallellogram;

• De oppervlakte van een parallellogram is tweemaal zo groot als de oppervlakte van een driehoek gecreëerd door een van zijn diagonalen.

• Het gebied van het parallellogram wordt in tweeën gedeeld door een lijn die door het middelpunt gaat.

• Elke niet-gedegenereerde affiene transformatie brengt een parallellogram naar een ander parallellogram

• Een parallellogram heeft rotatiesymmetrie van orde 2

• De som van de afstanden van elk binnenpunt van een parallellogram tot de zijkanten is onafhankelijk van de locatie van het punt

Rechthoek

Een vierhoek met vier rechte hoeken staat bekend als een rechthoek. Het is een speciaal geval van het parallellogram waarbij de hoeken tussen twee aangrenzende zijden rechte hoeken zijn.

Afbeelding
Afbeelding

Naast alle eigenschappen van een parallellogram, kunnen aanvullende kenmerken worden herkend bij het beschouwen van de geometrie van de rechthoek.

• Elke hoek op de hoekpunten is een rechte hoek.

• De diagonalen zijn even lang en halveren elkaar. Daarom zijn de doorsneden ook even lang.

• De lengte van de diagonalen kan worden berekend met de stelling van Pythagoras:

PQ2 + PS2 =SQ2

• De oppervlakteformule wordt gereduceerd tot het product van lengte en breedte.

Gebied van rechthoek=lengte × breedte

• Veel symmetrische eigenschappen zijn te vinden op een rechthoek, zoals;

– Een rechthoek is cyclisch, waarbij alle hoekpunten op de omtrek van een cirkel kunnen worden geplaatst.

– Het is gelijkhoekig, waarbij alle hoeken gelijk zijn.

– Het is isogonaal, waarbij alle hoeken binnen dezelfde symmetriebaan liggen.

– Het heeft zowel reflectiesymmetrie als rotatiesymmetrie.

Wat is het verschil tussen parallellogram en rechthoek?

• Parallellogram en rechthoek zijn vierhoeken. Rechthoek is een speciaal geval van de parallellogrammen.

• De oppervlakte van elk kan worden berekend met de formule basis ×hoogte.

• Gezien de diagonalen;

– De diagonalen van het parallellogram halveren elkaar en halveren het parallellogram om twee congruente driehoeken te vormen.

– De diagonalen van de rechthoek zijn even lang en halveren elkaar; doorsneden zijn even lang. De diagonalen halveren de rechthoek in twee congruente rechthoekige driehoeken.

• Gezien de interne hoeken;

– Tegengestelde interne hoeken van het parallellogram zijn even groot. Twee aangrenzende interne hoeken zijn aanvullend

– Alle vier de interne hoeken van de rechthoek zijn rechte hoeken.

• Gezien de zijkanten;

– In een parallellogram is de som van de kwadraten van de zijden gelijk aan de som van de kwadraten van de diagonaal (parallelogramwet)

– In rechthoeken is de som van de kwadraten van de twee aangrenzende zijden gelijk aan het kwadraat van de diagonaal aan de uiteinden. (Pythagoras` Regel)

Aanbevolen: