Fundamentele versus afgeleide hoeveelheden
Experimenteren is een kernaspect van natuurkunde en andere natuurwetenschappen. Theorieën en andere hypothesen worden geverifieerd en vastgesteld als wetenschappelijke waarheid door middel van uitgevoerde experimenten. Metingen vormen een integraal onderdeel van experimenten, waarbij de grootheden van en de relaties tussen verschillende fysieke grootheden worden gebruikt om de waarheid van de geteste theorie of hypothese te verifiëren.
Er zijn veel voorkomende reeksen fysieke grootheden die vaak worden gemeten in de natuurkunde. Deze grootheden worden volgens afspraak als fundamentele grootheden beschouwd. Met behulp van de metingen voor deze grootheden en de relaties daartussen kunnen andere fysieke grootheden worden afgeleid. Deze grootheden staan bekend als afgeleide fysieke grootheden.
Fundamentele hoeveelheden
Een reeks fundamentele eenheden wordt gedefinieerd in elk eenheidssysteem, en de corresponderende fysieke grootheden worden de fundamentele grootheden genoemd. Fundamentele eenheden worden onafhankelijk gedefinieerd en vaak zijn de hoeveelheden direct meetbaar in een fysiek systeem.
Over het algemeen vereist een systeem van eenheden drie mechanische eenheden (massa, lengte en tijd). Er is ook één elektrische eenheid vereist. Hoewel bovenstaande reeks eenheden voldoende kan zijn, worden voor het gemak maar weinig andere fysieke eenheden als fundamenteel beschouwd. c.g.s (centimeter-gram-seconde), m.k.s (meter-kilogram seconde) en f.p.s (feet-pound-second) zijn voorheen gebruikte systemen met fundamentele eenheden.
SI unit systeem heeft veel van de oudere unit systemen vervangen. In het SI-systeem van eenheden worden per definitie de volgende zeven fysieke grootheden beschouwd als fundamentele fysieke grootheden en hun eenheden als fundamentele fysieke eenheden.
Aantal | Eenheid | Symbool | Afmetingen |
Lengte | Meter | m | L |
Massa | Kilogram | kg | M |
Tijd | Seconden | s | T |
Elektrische stroom | Ampère | A | |
Thermodynamische Temp. | Kelvin | K | |
Hoeveelheid stof | Mole | mol | |
Lichtsterkte | Candela | cd |
Afgeleide hoeveelheden
Afgeleide grootheden worden gevormd door product van machten van fundamentele eenheden. Met andere woorden, deze grootheden kunnen worden afgeleid met behulp van fundamentele eenheden. Deze eenheden zijn niet onafhankelijk gedefinieerd; ze zijn afhankelijk van de definitie van andere eenheden. Aan afgeleide eenheden gekoppelde hoeveelheden worden afgeleide hoeveelheden genoemd.
Beschouw bijvoorbeeld de vectorhoeveelheid snelheid. Door de afstand te meten die een object heeft afgelegd en de benodigde tijd, kan de gemiddelde snelheid van het object worden bepaald. Daarom is snelheid een afgeleide grootheid. Elektrische lading is ook een afgeleide hoeveelheid waar het wordt gegeven door het product van de stroomsterkte en de benodigde tijd. Elke afgeleide hoeveelheid heeft afgeleide eenheden. Er kunnen afgeleide hoeveelheden worden gevormd.
Fysieke hoeveelheid | Eenheid | Symbool | ||
vlakhoek | Radiaal (a) | rad | – | m·m-1 =1 (b) |
ruimtehoek | Stradian (a) | sr (c) | – | m2·m-2 =1 (b) |
frequentie | Hertz | Hz | – | s-1 |
kracht | Newton | N | – | m·kg·s-2 |
druk, stress | Pascal | Pa | N/m2 | m-1·kg·s-2 |
energie, werk, hoeveelheid warmte |
Joule | J | N·m | m2·kg·s-2 |
kracht, stralingsstroom | Watt | W | J/s | m2·kg·s-3 |
elektrische lading, hoeveelheid elektriciteit | Coulomb | C | – | A·s |
elektrisch potentiaalverschil, elektromotorische kracht | Volt | V | W/A | m2·kg·s-3·A-1 |
capaciteit | Farad | F | C/V | m-2·kg-1·s4·A 2 |
elektrische weerstand | Ohm | V/A | m2·kg·s-3·A-2 | |
elektrische geleiding | Siemens | S | A/V | m-2·kg-1·s3·A 2 |
magnetische flux | Weber | Wb | V·s | m2·kg·s-2·A-1 |
magnetische fluxdichtheid | Tesla | T | Wb/m2 | kg·s-2·A-1 |
inductantie | Henry | H | Wb/A | m2·kg·s-2·A-2 |
Celsiustemperatuur | Graad Celsius | °C | – | K |
lichtstroom | Lumen | lm | cd·sr (c) |
m2·m-2·cd=cd |
verlichting | Lux | lx | lm/m2 | m2·m-4·cd=m-2·cd |
activiteit (van een radionuclide) | Becquerel | Bq | – | s-1 |
geabsorbeerde dosis, specifieke energie (verleend), kerma | Grijs | Gy | J/kg | m2·s-2 |
dosisequivalent (d) | Sievert | Sv | J/kg | m2·s-2 |
katalytische activiteit | Katal | kat | s-1·mol |
Wat is het verschil tussen fundamentele en afgeleide hoeveelheden?
• Fundamentele grootheden zijn de basisgrootheden van een eenheidssysteem en worden onafhankelijk van de andere grootheden gedefinieerd.
• Afgeleide grootheden zijn gebaseerd op fundamentele grootheden en kunnen worden gegeven in termen van fundamentele grootheden.
• In SI-eenheden krijgen afgeleide eenheden vaak namen van mensen zoals Newton en Joule.